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Abstract
We present a first step toward a microscopic theory for the glass transition
in systems with trivial static correlations. As an example we have chosen N
infinitely thin hard rods with length L, fixed with their centres on a periodic
lattice with lattice constant a. Starting from the N-rod Smoluchowski equation
we derive a coupled set of equations for fluctuations of reduced k-rod densities.
We approximate the influence of the surrounding rods on the dynamics of a pair
of rods by introduction of an effective rotational diffusion tensor D(�1,�2)

and in this way we obtain a self-consistent equation for D. This equation
exhibits a feedback mechanism leading to a slowing down of the relaxation.
It involves as an input the Laplace transform υ0(l/r) at z = 0, l = L/a, of a
torque–torque correlator of an isolated pair of rods with distance R = ar . Our
equation predicts the existence of a continuous ergodicity-breaking transition
at a critical length lc = Lc/a. To estimate the critical length we perform an
approximate analytical calculation of υ0(l/r) based on a variational approach
and obtain lvar

c
∼= 5.68, 4.84 and 3.96 for an sc, bcc and fcc lattice. We also

evaluate υ0(l/r) numerically exactly from a two-rod simulation. The latter
calculation leads to lnum

c
∼= 3.45, 2.78 and 2.20 for the corresponding lattices.

Close to lc the rotational diffusion constant decreases as D(l) ∼ (lc − l)γ with
γ = 1 and a diverging timescale tε ∼ |lc − l|−δ , δ = 2, appears. On this
timescale the t- and l-dependence of the one-rod density is determined by a
master function depending only on t/tε . In contrast to present microscopic
theories our approach predicts a glass transition despite the absence of any
static correlations.

1. Introduction

In the last two decades huge theoretical efforts were made in order to describe the glass transition
on a microscopic level in systems without quenched disorder. Microscopic means that, e.g., the
glass transition temperature and the dynamical properties in its vicinity can be calculated from

0953-8984/03/110967+19$30.00 © 2003 IOP Publishing Ltd Printed in the UK S967

http://stacks.iop.org/JPhysCM/15/S967


S968 R Schilling and G Szamel

equations which use as an input the knowledge of the interactions between microscopic con-
stituents of the system (atoms or molecules; hereafter we use the term particles). Most of this
activity has been devoted to structural glasses [1–4]. Although experiments [5–8] have demon-
strated that plastic crystals can exhibit an orientational glass transition which has many features
in common with the structural glass transition there seems to be no analytical theory for such
systems3. On the other hand molecular dynamics (MD) simulations [11–13] have confirmed
the similarity between glassy behaviour of plastic crystals and that of supercooled liquids.

The first successful microscopic theoretical approach to glassy dynamics in supercooled
liquids came from so-called mode coupling theory (MCT) [1, 2]. This theory was first suggested
and mainly worked out in detail by Götze and his co-workers. For reviews the reader may
consult [14–16]. MCT derives a closed set of equations for time-dependent correlators, like
the intermediate scattering function S(q, t). This set uses as an input the corresponding static
correlations, e.g. S(q), which depend only on thermodynamic variables like temperature T ,
density n etc. The static correlations can be calculated from the microscopic interactions by
use of either analytical or numerical tools [17]. By decreasing T (or increasing n) the peaks
of S(q) grow. If their magnitude becomes large enough a transition from an ergodic to a
non-ergodic phase occurs at a critical temperature Tc (or density nc). This dynamic transition
is interpreted as an ideal glass transition. MCT makes several non-trivial predictions for, e.g.,
time dependence of correlators [14–16] which have been successfully tested (see [18–21] for
reviews).

The second microscopic theory of the glass transition has been developed by Mézard and
Parisi [3]. Their first principles theory combines the use of the replica idea known from the spin
glass theory and of the liquid state theory techniques. It is related to an earlier density functional
approach [4]. The theory of Mézard and Parisi starts from the microscopic Hamiltonian for m
identical replicas of the system to which a symmetry breaking field is added. The free energy of
the replicated system is then calculated and the configurational entropy of the original system
is extracted from it. The theory predicts the existence of a critical temperature T f (which is
below Tc of MCT) at which the configurational entropy vanishes. This is then interpreted as
an ideal static glass transition.

Besides these two microscopic theories, let us mention one other attempt to describe the
glass transition that does not resort to microscopic potentials: based on several qualitative
assumptions Edwards and Vilgis [22] obtained the dependence of the self-diffusion constant
D for a system of hard rods on physical control parameter x , e.g., concentration, diameter or
length of the rods. A dynamical glass transition occurs when D becomes zero. A mean field
treatment results in D ∼ xc − x and an improved approach leads to the Vogel–Fulcher law
D ∼ exp[A/(xc − x)]. Close to the critical point xc a power law dependence of D on (xc − x)

is found with a non-trivial exponent γ = 7/6.
Both the above described microscopic theories have at least one feature in common: non-

trivial equilibrium correlations. These correlations are of primary importance for both theories.
For example, MCT requires that the vertices which enter into the self-consistent equations for
the correlation functions must depend on at least one control parameter. Recently, it has been
shown that a colloidal suspension with hard core plus attractive Yukawa potential can undergo
a gel transition [23] in a special limit: φ → 0 and K → ∞ such that � = K 2φ/b = constant.
Here φ is the volume fraction, K the interaction strength and b a measure of the inverse range of
interaction. In that limit the direct correlation function c(q) is proportional to K and becomes
independent of φ [24]. This implies that the static correlations vanish, i.e. S(q) → 1. But

3 The microscopic theory developed by Michel and Bostoen [9, 10] is valid for the orientational glass transition of
mixed crystals, i.e. crystals with quenched disorder.
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since the vertices are proportional to φ and involve a bilinear product of c(q) they become
proportional to �. Accordingly, despite the vanishing of the static correlations there is still
an ergodicity breaking transition driven by the increase of � [23–25]. Of course, this type
of behaviour is not generic in the φ–K phase space. In addition, whether the mode coupling
approximation remains reasonable must be still checked.

One may now ask the following question: can there be a generic glass transition if and
only if there exist non-trivial static correlations? To find an answer let us consider a liquid
of hard rods. This system was used as a paradigm in [22]. If the rod thickness d is finite
the static correlations are non-trivial and a glass transition will be predicted by either theory.
However, in the limit of infinitely thin hard rods, i.e. d = 0, with finite length L and finite
concentration c, the static properties become trivial. Note that in this limit there is no transition
to a nematic phase. Also, according to either of the two microscopic theories there is no glass
transition! In the case of MCT the vertices vanish. The absence of a glass transition is
also consistent with a microscopic theory worked out by one of the present authors and his
co-workers [26, 27]. There, it was shown that for infinitely thin hard rods with randomly
frozen orientations translational diffusion never ceases if the diffusion constant along the rod’s
direction is non-zero.

Now suppose we fix the infinitely thin hard rods with their centres on the sites of a three-
dimensional periodic lattice. Such a model has already been suggested earlier [22, 28]. It
can be used to describe the steric hindrance of the orientational degrees of freedom in plastic
crystals [6–8, 11–13]. Again, both MCT and the replica theory exclude a glass transition, due
to the lack of static correlations. The fact that MCT in its present form does not predict a
glass transition has already been stressed in [29]. Nevertheless, computer simulations [29, 30]
showed glassy behaviour and suggested a dynamical ergodicity-breaking transition at a critical
length4 Lc. This simple example makes it clear that non-trivial static behaviour is not necessary
for a glass transition. It is the main goal of our paper to present a microscopic approach to the
glass transition for systems without static correlations.

A short account of our approach for the case of a simple cubic lattice was given in [31].
In the present paper we will discuss our model and the theoretical framework in more detail
and will extend the results to bcc and fcc lattices. Furthermore, we will investigate the type of
glass transition and the long time dynamics in its vicinity.

The outline of our paper is as follows. In the next section we will present and discuss the
model. The third section contains the analytical theory used to describe the glass transition.
The results are given in the fourth section and the final section includes a summary and some
conclusions.

2. Model

We consider N hard, infinitely thin rods (i.e. diameter d = 0) with length L and with their
centres fixed at the lattice sites of a periodic lattice with lattice constant a. The dimensionless
control parameter is the reduced rod length, l = L/a. In the following we will restrict ourselves
to a simple cubic lattice. Its unit cell is depicted in figure 1. All qualitative conclusions which
will be drawn in this paper remain valid for all periodic lattices.

It is obvious that for l � 1 each rod can rotate freely: there is no steric hindrance. For
l above one, collisions between a rod and adjacent ones appear. If 1 � l �

√
2 a given rod

interacts only with the six nearest neighbours. Further increase of l will introduce collisions

4 Note that different cubic lattices were used in [29] and [30]; moreover the authors of [30] fixed the rods with one
of their endpoints at the lattice sites.
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Figure 1. Unit cell of the sc lattice with lattice constant a with hard rods of length L .

(This figure is in colour only in the electronic version)
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Figure 2. Illustration of the blocking of rod 1 by rods 2–5 within shaded region for l > 2.

between next-, third-, fourth- etc nearest neighbours, generating a strong increase of steric
hindrance. Since we have chosen infinitely thin rods there is no equilibrium transition to an
orientationally ordered phase. On the other hand, due to the rise of steric hindrance with l we
expect an orientational glass transition as detected in [29] and [30]. Although steric hindrance
already exists for l > 1, it seems that no ergodicity-breaking transition can occur for l < 2.
Let us consider the following simple argument. If l > 2 then the nearest-neighbour rods of
a tagged rod (rod 1) can ‘overlap’ with, e.g., the top of the tagged rod (see figure 2). This
induces a ‘cage’ for the tagged rod. Note that this argument is not rigorous, because for l < 2
there might exist other configurations similar to the one shown in figure 2 which could block
the tagged rod’s rotation. But the value l = 2 also plays a role from a different point of view.
Consider two neighbouring rods with their centres along the z-axis. Their orientations can be
described by �i = (θi , φi ) and � j = (θ j , φ j). At a collision we have either φ j = φ±

i (see
figure 3(a)) or φ j = φ±

i + π (see figure 3(b)), for fixed θi , θ j and φi . The notation φ+
i and φ−

i
means that rod j is behind and in front of rod i , respectively (see figure 3). Now, it is easy to
prove that for arbitrary θi and θ j there exists only one contact (either at φ±

i or at φ±
i + π) for

l < 2 (see figures 3(a), (b)). In that case φ j can be varied freely by 2π . But for l > 2 there is
a finite range for both angles θi and θ j such that two contacts (at φ±

i and φ±
i + π) exist (see

figure 3(c)). Therefore the ‘phase space’ [0, 2π] for φ j −φi is decomposed into two ‘ergodic’
components [0, π] and [π, 2π] for θi and θ j kept fixed. Transitions between both components
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(a) (b)

(c)

Figure 3. Illustration of possible collisions of rod i and j for fixed rod i . For better visualization
a small but finite thickness has been used. (a) Single collision for l < 2 at φ j = φ±

i . The rod
j ′ (dashed) turned around the z-axis by π does not lead to a second collision if l < 2. (b) Single
collision for l < 2 at φ j = φ±

i + π . Again a rotation by π (not shown) does not yield a second
collision (c) Two collisions for l > 2; θi and θ j are chosen such that two collisions occur at φ j = φ±

i
and φ j = φ±

i + π .

are forbidden. If the rods are fixed at the lattice sites with one of their end points (as in [30])
then there is only one contact, for all l > 1/2.

The condition for a collision can be quantified as follows [32]. Let ui and u j be the unit
vectors along rod i and j and ri j the vector connecting the centre of rod j with that of rod i
(see figure 4). ui and u j define a plane. Let r⊥

i j be the component of ri j perpendicular to that
plane and r⊥

i j = |r⊥
i j |. Denote the distance of the point of contact to the centre of rod i and j

by, respectively, si j and s ji (figure 4). Then a collision occurs if

r⊥
i j = 0+, |si j | < L/2, |s ji | < L/2 (1)

where 0+ represents the limit d → 0. Simple algebra yields

si j = −[(ui · ri j) − (ui · u j )(u j · ri j)]/[1 − (ui · u j )
2] (2)
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Figure 4. Illustration of geometrical quantities defined in the text for two rods i and j .

s ji = [(u j · ri j ) − (ui · u j )(ui · ri j)]/[1 − (ui · u j )
2]. (3)

Note

(i) that si j and s ji can be negative; in that case the contact points into the direction of −ui

and −u j , respectively, and
(ii) that ri j is time independent and is always equal to a lattice vector Ri j = Ri − R j .

The configurational part of the partition function is given by

Zc(T, N; l) =
∫ N∏

i=1

d�i e−βV (�1,...,�N ) = (4π)N , β = (kB T )−1 (4)

since the hard rod interaction potential V (�1, . . . , �N ) vanishes almost everywhere. The
corresponding contribution −kB T N ln 4π to the free energy is analytic in temperature T and
does not depend on l. Hence, there is no equilibrium phase transition. The equilibrium
pair distribution function g(2)

i j (�i ,� j) is related to the probability of finding a rod at Ri and
R j( �= Ri) with orientations �i and � j , respectively. It is given by

g(2)

i j (�i ,� j) = 1 − θ
(
0+ − r⊥

i j

)
θ

(
L

2
− |si j |

)
θ

(
L

2
− |s ji |

)
(5)

where the Heaviside functions are non-zero at a collision, which happens if conditions (1) are
fulfilled. Since a collision is non-generic, g(2)

i j (�i ,� j ) = 1 for almost all �i and � j . Hence
there are no static correlations, except on a set of measure zero.

3. Kinetic theory

In this section we will describe the dynamics for our model and the approximations leading to
a closed set of equations. We assume that the microscopic N-rod dynamics of the system
is Brownian rather than Newtonian. Previous studies of systems with non-trivial static
correlations have indicated that glassy dynamics should not depend on that choice [33, 34].

The starting point of the theory is the so-called generalized Smoluchowski equation for
the N-rod probability density PN (�1, . . . , �N ; t) [32],

∂

∂ t
PN (�1, . . . , �N ; t) = D0

N∑
n=1

∇n · [∇n − Tn(�1, . . . , �N )]PN (�1, . . . , �N ; t) (6)
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where D0 is the bare rotational diffusion constant, ∇n ≡ ∇�n ≡ un × ∇un and

Tn(�1, . . . , �N ) =
∑
j �=n

T jn(� j ,�n). (7)

Ti j(�i ,� j ) describes the singular torque when two rods at sites i and j with vector distance
ri j collide:

Ti j(�i ,� j ) = si j(ui × r̂⊥
i j )δ(r

⊥
i j − 0+)θ

(
L

2
− |si j |

)
θ

(
L

2
− |s ji |

)
(8)

where r̂⊥
i j = r⊥

i j/r⊥
i j . Using equation (5) it is easy to prove that

∇i g
(2)
i j (�i ,� j) = Ti j(�i ,� j)g(2)

i j (�i ,� j). (9)

Equation (9) describes the non-crossability condition. Note that Ti j(�i ,� j) differs slightly
from Ti j(�i ,� j) used in [32] since there ∇ui was used instead of ∇�i . Also, a similar
generalized Smoluchowski equation had been used before to describe a liquid of infinitely thin
hard rods with randomly frozen orientations [26, 27].

In a next step we present equations of motion for the reduced k-rod density

ρ(k)
n1···nk

(�1, . . . , �k; t) =
∫ ∏

n �=n1,...,nk

d�n PN (�1, . . . , �N ; t). (10)

These equations form an infinite, coupled hierarchy [35] of the following form:

∂

∂ t
ρ(k)

n1···nk
(�1, . . . , �k; t) = L(k)ρ(k)

n1···nk
(�1, . . . , �k; t)

− D0

∑
n∈Ik

∑
nk+1 �∈Ik

∇n ·
∫

d�k+1 Tnnk+1(�n,�k+1)ρ
(k+1)
n1···nk+1

(�1, . . . , �k+1; t) (11)

with the k-rod Smoluchowski operator,

L(k) = D0

∑
n∈Ik

∇n ·
[
∇n −

∑
n′∈Ik

n′( �=n)

Tnn′(�n,�n′)

]
(12)

and Ik = {n1, . . . , nk}. As initial conditions we choose

ρ(k)
n1···nk

(�1, . . . , �k; 0) = 1

(4π)k−1
δ(�1|�0)g(k)

n1···nk
(�1, . . . , �k), (13)

where δ(�|�′) = sin θδ(θ − θ ′)δ(φ −φ′). Here, g(k)
n1···nk

(�1, . . . , �k) is the equilibrium k-rod
distribution function which is equal to one almost everywhere.

To proceed we introduce the fluctuations of the k-rod density for k � 2

δρ(k)
n1···nk

(�1, . . . , �k; t) = ρ(k)
n1···nk

(�1, . . . , �k; t) − 1

(4π)k−1 g(k)
n1···nk

(�1, . . . , �k)ρ
(1)
n1

(�1; t).

(14)

These fluctuations vanish in equilibrium and for t = 0.
Substituting ρ(k) from equation (14) into (11) and taking into account that the equilibrium

k-rod rotational current density vanishes we obtain the following equation:

∂

∂ t
ρ(1)

n1
(�1; t) + ∇1 · j(1)

n1
(�1; t) = 0 (15)

where the one-rod rotational current density reads

j(1)
n1

(�1; t) = −D0

{
∇1ρ

(1)
n1

(�1; t) −
∑

n2 �=n1

∫
d�2 Tn1n2(�1,�2)δρ

(2)
n1n2

(�1,�2; t)

}
. (16)
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At the next level, k = 2, it follows by use of equation (9) that

∂

∂ t
δρ(2)

n1n2
(�1,�2; t) = − 1

4π
Tn1,n2(�1,�2)g(2)

n1n2
(�1,�2) · j(1)

n1
(�1; t)

+ D0{∇1 · [∇1 − Tn1n2(�1,�2)] + (1 ↔ 2)}δρ(2)
n1n2

(�1,�2; t)

+ A(2)
n1n2

(�1,�2; t) (17)

where

A(2)
n1n2

(�1,�2; t) = D0∇1 ·
[

g(2)
n1n2

(�1,�2)
∑

n3

1

4π

∫
d�3 Tn1n3(�1,�3)δρ

(2)
n1n3

(�1,�3; t)

]

− D0

2∑
ν=1

∇ν ·
∑

n3

∫
d�3 Tnνn3(�ν,�3)δρ

(3)
n1n2n3

(�1,�2,�3; t). (18)

Let us interpret these equations: equation (15) is the continuity equation. The
corresponding one-rod current density (equation (16)) consists of two parts. The first describes
the contribution from the free Brownian dynamics of a tagged rod at site n1 and the second
is due to the interaction of the tagged rod with a second rod at side n2. The first line on the
rhs of equation (17) originates from the last term on the rhs of equation (14); its second line
describes Brownian dynamics of an isolated pair of rods at sites n1 and n2 and the last line
contains the influence of a third rod at n3 on the rods at n1 and n2. In order to close this set
of equations we follow the strategy of [26, 27] and approximate the influence of a third rod by
introducing an effective, non-local (in angular space and time) diffusion tensor Deff(�,�′; t)
and simultaneously neglecting A(2)

n1n2
:

{D0∇1 · [∇1 − Tn1n2(�1,�2)] + (1 ↔ 2)}δρ(2)
n1n2

(�1,�2; t)

→
{
∇1 ·

∫ t

0
dt ′

∫
d�′

1 Deff(�1,�
′
1; t − t ′) · [∇′

1 − Tn1n2(�
′
1,�2)]

× δρ(2)
n1n2

(�′
1,�2; t) + ∇2 ·

∫ t

0
dt ′

∫
d�′

2 Deff(�2,�
′
2; t − t ′)

× [∇′
2 − Tn2n1(�

′
2,�1)]δρ(2)

n1n2
(�1,�

′
2; t)

}
=: (�(2) ∗ δρ(2))n1n2(�1,�2; t), (19)

A(2)
n1n2

(�1,�2; t) ≈ 0. (20)

The generalized rotational diffusion tensor D(�,�′; t) is defined through a constitutive
equation relating the one-rod current density and the (angular) gradient of the one-rod density

j(1)
n1

(�; t) = −
∫ t

0
dt ′

∫
d�′ D(�,�′; t − t ′) · ∇�′ρ(1)

n1
(�′; t). (21)

As the final approximation we impose a self-consistency condition,

Deff = D. (22)

Equations (15)–(17) and (19)–(22) form a closed set of equations for ρ(1), δρ(2) and D.
Taking their Laplace transform5 it is straightforward to (formally) eliminate ρ(1) and δρ(2)

which results in:

5 Here we use the definition f̂ (z) = ∫ ∞
0 dt f (t) exp(−zt), Re z > 0 and take δρ

(2)
n1n2 (�1,�2; t = 0) = 0 into

account.
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D−1
0 ĵn1(�1; z) +

∑
n3

1

4π

∫
d�3 Tn1n3(�1,�3)[(z − �̂(2))−1

∗ (Tn1n3 g(2)
n1n3

· ĵ(1)
n1

)]n1n3(�1,�3; z) =
∫

d�3 D̂−1(�1,�3; z) · ĵn1(�3; z)

(23)

whereˆdenotes the Laplace transformed quantities. From equation (23) we find immediately
the self-consistent equation for D̂(�1,�2; z):

D̂−1(�1,�2; z) = D−1
0 δ(�1|�2)

+
1

4π

∑
n3

Tn1n3(�1,�2)[(z − �̂(2))−1 ∗ (T t
n1n3

g(2)
n1n3

)]n1n3(�1,�2; z). (24)

Taking the limit z → 0 in equation (24) and operating with (1/4π)
∫

d�1
∫

d�2 on both
sides of the resulting equation yields the following for the diffusion tensor D(�1,�2) ≡
D̂(�1,�2; z = 0):

4π〈D−1〉 = D−1
0 −

∑
n3

〈(�̂(2)†)−1 ∗ T )n1n3T
t
n1n3

〉 (25)

with

〈 fn1n2 hn1n2〉 = 1

(4π)2

∫
d�1

∫
d�2 g(2)

n1n2
(�1,�2) f ∗

n1n2
(�1,�2)hn1n2(�1,�2), (26)

and

(D0)
αβ = D0δ

αβ. (27)

T t is the transpose of T and for the adjoint two-rod operator we find from equation (19)

(�̂(2)† ∗ f )n1n2(�1,�2) = [∇1 + Tn1n2(�1,�2)] ·
∫

d�3 D(�3,�1) · ∇3 fn1n2(�3,�2)

+ [∇2 + Tn2n1(�2,�1)] ·
∫

d�3 D(�3,�2) · ∇3 fn1n2(�1,�3). (28)

The reader should note that

(i) g(2)
n1n2

(�1,�2) in equation (26) can be skipped, because it is equal to one almost
everywhere; of course, it must not be dropped if ∇1 or ∇2 act on it, as in equation (18); in
that case one can use equation (9);

(ii) 〈D−1〉 does not depend on n1 and n2 and
(iii) the tensor 〈((�̂(2)†)−1 ∗T )n1n3T

t
n1n3

〉 in equation (25) depends only on Rn3 −Rn1 because
of the lattice translational invariance.

Accordingly
∑

n3
〈· · ·〉 does not depend on n1. Equation (25) can also be rewritten as follows:

4π〈D−1〉 = D−1
0 +

∑
n3

∫ ∞

0
dt〈(e�̂(2)† t ∗ T )n1n3T

t
n1n3

〉. (29)

Let us discuss equation (29). It is a functional equation for the rotational diffusion
tensor D, since �̂(2)† also involves D. If l � 1 then Tn1n2(�1,�2) ≡ 0 and therefore
equation (29) implies that

D(�1,�2) = D0δ(�1|�2) (30)

as it should. Increasing l beyond one leads to an ‘increase’ of the friction tensor 〈D−1〉,
due to the positive definite, time-dependent torque–torque correlation tensor 〈(exp(�̂(2)†t) ∗
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T )n1n3T
t
n1n3

〉 which determines the second term in equation (29). This ‘increase’ of the
‘renormalized’ friction tensor D−1 implies a decrease of the ‘renormalized’ diffusion tensor D.
Since this one enters the exponent of exp(�̂(2)†t) the relaxation of the torque–torque correlation
will slow down. This in turn leads to an ‘increase’ of the second term of equation (29) leading
to a further ‘increase’ of D−1 and so on. This feedback mechanism, which is different from
but still resembles that of MCT [14–16], may finally lead to the vanishing of diffusion and
therefore to a glass transition.

Although the functional equation possesses a rather clear structure it probably cannot be
solved exactly. For this one would have to determine the eigenvalues and eigenfunctions of
�̂(2)†. Due to the singular character of Tn1n2(�1,�2) (cf equation (8)) on the three-dimensional
contact hypersurface defined by equation (1) this does not seem to be feasible. In order to make
progress and to get explicit results for D we will use the following additional approximation:

(D(�1,�2))
αβ ≈ D(l)δαβδ(�1|�2). (31)

Substituting equation (31) into (29) and acting with 1
3

∑
α,β on both sides yields

D(l) = D0[1 − υ(l)]. (32)

The l-dependent coupling function υ(l) follows from the second term of equation (29) by use
of equations (28) and (31):

υ(l) = 1
3

∑
n3

∫ ∞

0
dt 〈Tn1n3 · eL

(2)† tTn1n3〉 (33)

with the adjoint of the two-rod Smoluchowski operator (cf equation (12)),

L(2)† = [∇1 + Tn1n2(�1,�2)] · ∇1 + (1 ↔ 2) (34)

where D0 is replaced by one. The calculation of the relevant quantity υ(l) and the determination
of a critical length lc at which D(l) vanishes will be presented in the next section.

4. Results

4.1. Glass transition singularity

Using the local approximation equation (31), we obtained equation (32) which constitutes a
rather simple result. Before we calculate υ(l) let us discuss D(l) and υ(l) on a qualitative
level. Since Tn1n2(�1,�2) ≡ 0 for l � 1 it follows that υ(l) = 0 and therefore D(l) = D0 for
l � 1, as it should. Next, we introduce

υ0(l/rn) = 1
3

∫ ∞

0
dt 〈T0n · eL

(2)† t T0n〉 (35)

where rn = |Rn|/a. This is related to the torque–torque correlator of one rod at the origin
and another one at site n. Note that the rhs of equation (35) depends on |Rn|, but not on the
direction of Rn. υ0(x), of course, vanishes for x � 1, is positive for x > 1 (see below) and
we expect it to converge to a finite limit υ∞

0 for x → ∞. υ(l) is completely determined by
υ0(x):

υ(l) =
∑

n

υ0(l/rn) (36)

where the sum is restricted to such n for which rn < l. This relation can be used to determine
the asymptotic behaviour of υ(l) for l → ∞. Approximating the sum by an integral which
becomes more and more accurate with increasing rn we get
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υ(l) ≈
∫

1�r�l
d3r υ0(l/r) = 4π

∫ l

1
dr r2υ0(l/r) = 4π

(∫ 1

l−1

dx x2υ0

(
1

x

))
l3

which gives

υ(l) ≈ c · l3 + O(l2), l → ∞ (37)

with

c = 4π

∫ 1

0
dx x2υ0

(
1

x

)
> 0. (38)

That υ(l) ∼ l3 for l → ∞ is obvious since all rods within a sphere of radius of order l will
collide with the central one. Their number, of course, is proportional to l3. Because υ(l) = 0
for l � 1 and υ(l) increases linearly with l3 for large l there must exist a critical length lc for
which υ(lc) = 1 and therefore D(lc) = 0. To determine lc at which a dynamical glass transition
takes place we have to calculate υ0(x). Although this quantity is much simpler than the second
term in equation (29), it cannot be determined exactly analytically (see below). Therefore the
exact evaluation can only be done numerically. For such a numerically exact calculation we
performed a simulation of the Brownian dynamics (defined by L(2)†) of an isolated pair of rods
with distance rn . The time-dependent torque–torque correlator resulting from this simulation
is shown in figure 5 for several values of l/rn . For t → 0 we find a power law divergence t−1/2

as expected and already proven for the force–force correlator of hard spheres [36, 37]. Since
only two rods are considered, the system is ergodic and therefore the torque correlations relax
to zero. Figure 5 shows that the relaxational behaviour changes qualitatively around l/rn = 2
from a fast decay as for free Brownian dynamics to a rather slow relaxation. This crossover at
l/rn ≈ 2 is related to the properties discussed in section 2. Whether the long-time decay of the
torque–torque correlation is purely exponential, proportional to t−α exp(−λt) or even a single
power law t−α (as is true for two hard spheres [36]) cannot be decided from our numerical
data. Although the log–linear representation in figure 5 exhibits a bending for large t (which
would indicate deviation from a pure exponential) the exponential behaviour could appear on
a much larger timescale on which the statistical fluctuations of the numerical data prevent the
determination of the precise long-time decay. The numerical evaluation of the time integral
in equation (35) leads to υnum

0 (x) presented in figure 6. The reader should note the strong
increase starting at x = l/rn ≈ 2.

Now let us turn to the analytical calculation of υ0(x). For this we rewrite υ0(x) as

υ0(x) = 1
3 〈T0n · (−L(2)†)−1T0n〉 (39)

which is (up to the factor 1/3) the Laplace transformed torque–torque correlator at z = 0.
Analogous to [26, 27] we introduce a vector function fn1n2(�1,�2) such that

L(2)†fn1n2(�1,�2) = Tn1n2(�1,�2). (40)

Equation (40) can be decomposed into a regular part

[∇2
1 + ∇2

2 ]fn1n2(�1,�2) = 0, (41)

and a singular one

[s12(u1 × r̂⊥
12) · ∇1 + s21(u2 × r̂⊥

21) · ∇2]fn1n2(�1,�2) = s12(u1 × r̂⊥
12). (42)

Equation (42) is to be satisfied for �1,�2 located on the three-dimensional contact
hypersurface. Accordingly, equations (41) and (42) describe a boundary value problem with
boundary value on the three-dimensional hypersurface embedded in the four-dimensional space
built by the surface of two unit spheres. This is a difficult mathematical problem which seems
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Figure 5. Time dependence of the torque–torque correlator of an isolated pair of rods for different
l/rn . Dotted curve, l/rn = 1.8; dash–dotted curve, l/rn = 2; dashed curve, l/rn = 4; solid curve,
l/rn = 6.

Figure 6. υ0(x) from the numerically exact (squares) and the variational calculation (solid curve).

to resist a rigorous solution. If it could be solved then the calculation of υ0(x) is reduced to
the calculation of an integral over �1 and �2:

υ0(x) = − 1
3 〈T0n · f0n〉. (43)

Therefore, we resort to an alternative. It is easy to prove (by the use of equation (9)) that (40)
is the variational equation of the functional

F[fn1n2(�1,�2)] = 1
3 [〈fn1n2 · L(2)†fn1n2〉 − 2〈Tn1n2 · fn1n2〉]. (44)

For a similar discussion see [38]. It can be easily shown by partial integration that

〈fn1n2 · L(2)†fn1n2〉 = − 1

(4π)2

∫
d�1

∫
d�2 g(2)

n1n2
(�1,�2)

∑
α

[(∇1 f α
n1n2

(�1,�2))
2

+ (∇2 f α
n1n2

(�1,�2))
2] (45)

which is negative for all fn1n2 �= constant, i.e. L(2)† is a negative operator. Therefore one can
follow [38] and prove that the solution f sol

n1n2
(�1,�2) of equation (40) is the non-degenerate

maximum of F . From equations (40), (43) and (44) we then find that

υ0(x) = F[f sol
n1n2

(�1,�2)], (46)
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i.e. the maximum value ofF is just υ0(x). Since the maximum is non-degenerate the following
inequality is true for any trial function fvar

n1n2
(�1,�2):

υvar
0 (x) ≡ F[f var

n1n2
(�1,�2)] � υ0(x). (47)

Choosing an appropriate trial function offers the possibility of determining a lower bound for
υ0(x) and therefore an upper bound for the critical length lc.

The boundary value problem described above is similar to those arising from
electrodynamics or hydrodynamics. Its singular part implies that fn1n2(�1,�2) is
discontinuous at the contact surface. This is similar to the behaviour of the electric field
at a dipolar layer. Without restricting generality, we can choose Rn2 − Rn1 along the z-
axis. Then the relevant coordinate is φ = φ2 − φ1 and contacts can occur at φ = 0± or
φ = π± (see the discussion in section 2), i.e. fn1n2(�n1,�n2) ≡ fn1n2(θ1, θ2, φ1, φ) must be
discontinuous at φ = 0 and π . Next, equation (43) makes it obvious that |Tn1n2 · fn1n2 | should
be made as large as possible. This can be done by choosing fn1n2 ∼ Tn1n2 ∼ u1 × r̂⊥

12 =
(cos θ1 cos φ1, cos θ1 sin φ1,− sin θ1). Finally, the calculation ofF from equation (44) requires
the calculation of the rhs of equation (45). Since ∇i f α

n1n2
(�1,�2) involves 1/ sin θi for

x- and y-components of the gradient, the integrals in equation (45) will not exist unless
f α
n1n2

∼ (sin θ1)
ν1(sin θ2)

ν2 with ν1 � 1 and ν2 � 1. These considerations suggest using
the following trial function:

f var
n1n2

(�1,�2) ≡ λhvar
n1n2

(�1,�2) = λ sin θ1 sin θ2

( cos θ1 cos φ1

cos θ1 sin φ1

− sin θ1

)

×




π

2
− (φ2 − φ1), 0 < φ2 − φ1 < π

3π

2
− (φ2 − φ1), π < φ2 − φ1 < 2π

(48)

with λ being a variational parameter. For the (φ2 −φ1)-dependence we have made the simplest
choice taking a linear variation with discontinuities at 0 and π . Note also that fvar

n1n2
(�1,�2)

does not depend on either Rn2 − Rn1 or x = l/rn , which will be not true for the true, exact
solution f sol

n1n2
(�1,�2). Substituting f var

n1n2
(�1,�2) into equation (44), where the first term is

evaluated by equation (45), one obtains

F[f var
n1n2

(�1,�2)] = F(λ) = λ2 I2 − 2λI1(x) (49)

with

I1(x) = 1

3

1

(4π)2

∫
d�1

∫
d�2 hvar

n1n2
(�1,�2) · Tn1n2(�1,�2) (50)

I2 = −1

3

1

(4π)2

∫
d�1

∫
d�2

∑
α

[(∇1hvar,α
n1n2

(�1,�2))
2 + (∇2hvar,α

n1n2
(�1,�2))

2]. (51)

Note that I2 does not depend on x . F(λ) is easily maximized. As a result one obtains

υvar
0 (x) = F(λmax) = (I1(x))2

(−I2)
. (52)

I2 can be calculated analytically:

I2 = − 2
81 (27 + 2π2) ∼= −1.154 (53)

whereas I1(x) must be calculated by numerical integration, due to the non-trivial contact
hypersurface. The result υvar

0 (x) following from this approach is shown in figure 6. It is
interesting that υvar

0 (x) reproduces the crossover behaviour found for υnum
0 (x) close to x = 2

from υvar
0 (x) ≈ 0 for x < 2 to υvar

0 (x) > 0 for x > 2. Comparison of υnum
0 (x) with υvar

0 (x)
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Figure 7. υ(l) for an sc lattice from the numerically exact (squares) and the variational calculation
(solid curve). lc denotes the critical length for which υ(lc) = 1.

confirms that υvar
0 (x) is a lower bound for υnum

0 (x), as it should be. Introducing υ0(x) from
both approaches into equation (36) leads to υ(l) represented in figure 7 for an sc lattice. From
this figure we get

lnum
c

∼= 3.45, lvar
c

∼= 5.68 sc lattice.

υ(l) can be calculated for any periodic lattice. For the other cubic lattices we obtained

lnum
c

∼=
{

2.78

2.20,
lvar
c

∼=
{

4.84 bcc lattice

3.96 fcc lattice.

Since υvar(l) � υnum(l) ∼= υ(l), it follows that lvar
c � lnum

c
∼= lc. The critical length

decreases when going from sc to bcc to fcc lattice. This decrease is related to

(i) the increase of the coordination number z from six to eight to 12 and
(ii) a decrease of the nearest-neighbour distances r1 from 1 to

√
3/2 to

√
2/2 (in units of the

lattice constant a).

Since an increase of z and a decrease of r1 results in an increase of the steric hindrance, lc

must decrease. As the increase of steric hindrance is equivalent to an increase of collisions,
i.e. of contacts, our result has some similarity to that found in [39]. These authors have used a
probabilistic approach in order to derive a criterion for the mechanical stability of an off-lattice
system of infinitely thin hard rods in its randomly closed-packed glassy state. It has been found
that a mechanically stable amorphous phase occurs if the average number of contact points
per rod becomes five. However, such an arrangement of hard rods with d = 0 is dynamically
unstable, as discussed in the introduction. In the simulation performed in [29] it was found
that lsim

c
∼= 2.7 for an fcc lattice. On the other hand [30] found lsim

c
∼= 4.5 for an sc lattice. Note

that in [30] the rods were fixed with one of their endpoints, and not with their centres. Our
results for lnum

c and lvar
c agree satisfactorily with the simulational result of [29]. The difference

between our result and that of [30] may be due to the different way of fixing rods on the lattice
that was mentioned above.
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The authors of [29] have also studied the l-dependence of the rotational diffusion constant
D(l) defined by

D(l) = lim
t→∞

(
− 1

2t
ln

[
1

N

N∑
n=1

〈un(t) · un(0)〉
])

. (54)

The variation of D over about two orders in magnitude follows a power law D(l) ∼ (lc − l)γ
M D

with γ M D ∼= 4.2. Since υ(l) is analytical for l > 1 it follows that 1−υ(l) ∼ lc−l and therefore
D(l) ∼ (lc − l). Hence our analytical theory yields γ = 1 which differs significantly from
γ M D . This deviation may have two reasons. First, our result γ = 1 is mean-field-like (see,
e.g., [22]). Note that in [22] going beyond the mean field approximation it has been found that
γ ∼= 7/6 [22] which is still close to one. Second, γ M D ∼= 4.2 is unusually high. Simulations
and experiments of supercooled liquids usually yield γ ≈ 2, consistent with most MCT
analyses [14–16, 18–20].

4.2. Non-ergodicity parameter and dynamics close to lc

The analysis in section 4.1 has proven that our theory predicts a dynamical glass transition
at a critical length lc. There are two important questions remaining. First, does the non-
ergodicity parameter change at lc in a continuous (type-A transition [14]) or discontinuous
(type-B transition [14]) way? Second, what is the time or frequency dependence of the one-
rod density ρ(1)

n close to lc? The present section will give answers to both questions.
Let us expand ρ̂(1)

n (�; z) and ĵ(1)
n (�; z) into spherical harmonics:

ρ̂(1)
n (�; z) =

∑
λ

ρ̂
(1)
n,λ(z)Yλ(�) (55)

ĵ(1)
n (�; z) =

∑
λ

ĵ
(1)
n,λ(z)Yλ(�) (56)

where λ = ( j, m), j = 0, 1, 2, . . . ,− j � m � j . Furthermore, let us extend approximation
(31) to finite z:

(D̂(�1,�2; z))αβ ≈ D̂(z)δαβδ(�1|�2). (57)

It is easy to prove then that the Laplace transform of equations (15) and (21) leads to

φ̂λ(z) ≡ ρ̂
(1)
λ (z)/ρ(1)

λ (t = 0) = 1/[z + j ( j + 1)D̂(z)], (58)

where we skipped the index n.
The non-ergodicity parameter fλ is defined as follows:

fλ = lim
z→0

zφ̂λ(z). (59)

Taking into account approximation (57) we get from equation (24) after operating with
(1/4π)

∫
d�1

∫
d�2 on both sides the self-consistency equation for D̂(z):

1

D̂(z)
= 1

D0
+

1

D̂(z)
υ̂(ζ ; l), ζ = z/D̂(z), (60)

with

υ̂(ζ ; l) = 1
3

∑
n

〈T0n · [ζ − L(2)†]−1T0n〉. (61)

Inverse Laplace transformation of equation (61) yields

υ(t; l) = 1
3

∑
n

〈T0n · eL
(2)†tT0n〉. (62)
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Note that υ(t; l) is the time-dependent analogue of υ(l) defined in equation (33).
Equation (60) has a similar mathematical structure to the corresponding equation for a

Lorentz gas obtained from a mode coupling approximation [40, 41]. Assuming that υ(t; l)
does not decay more slowly than t−5/2 for6 t → ∞ it follows from the Tauberian theorems [42]
that

υ̂(ζ ; l) = υ̂(0; l) + υ̂ ′(0; l)ζ + O(ζ 3/2) (63)

where

υ̂(0; l) ≡ υ(l)

υ̂ ′(0; l) = − 1
3

∑
n

〈T0n · (L(2)†)−2T0n〉 := −a(l) < 0. (64)

Substituting equations (63) and (64) into (60) and neglecting O(ζ 3/2) we get a quadratic
equation for z/D̂(z), the physical solution of which is

z/D̂(z) = 1
2

[
ε(l) +

√
ε2(l) + z · t0

]
(65)

with

ε(l) = υ(l) − 1

a(lc)
=

{
< 0, l < lc (ergodic phase)

� 0, l � lc (glass phase)
(66)

and t0 = 4/(a(lc)D0) being a microscopic timescale. Note that equation (65) is identical to
the corresponding equation obtained for the so-called F1-model [14]. Accordingly, all results
for the F1-model [14] hold here as well. This implies

(i) that the glass transition is of type A, i.e. the non-ergodicity parameters (obtained from
equations (58) and (59))

fλ(l) =



0, l � lc

ε(l)

j ( j + 1)

∼= υ ′(lc)

a(lc) j ( j + 1)
(l − lc), l → l+

c
(67)

vary continuously at lc,
(ii) at the critical point l = lc and for z → 0, t → ∞

φ̂λ(z)
∼= 1

2 (zt0)
1/2, φλ(t)

∼= 1√
4π

(t/t0)
−1/2 (68)

and
(iii) for |l − lc| � 1 and for z → 0, t → ∞

φ̂λ(z, ε) = (|ε|/ωε)φ̂λ(z/ωε), φλ(t, ε) = |ε|φλ(t/tε) (69)

with ωε = t−1
ε = ε2/t0.

In other words, the (z, ε)- and (t, ε)-dependence follows from the master function φ̂λ and φλ

(equation (68)), respectively, by use of the scaled frequency z/ωε and time t/tε . The timescale
tε diverges as ε−2 when approaching the glass transition independent of the sign of ε.

6 Our numerical result (figure 5) is consistent with this assumption. It is possible that the decay is exponential due
to the compact configuration space of two needles in contrast to two hard spheres.
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5. Summary and conclusions

Our main motivation has been the microscopic description of the glass transition for systems
with trivial statics, i.e. systems which do not undergo an equilibrium phase transition to an
ordered phase and do not have static correlations. For such systems, present microscopic
theories like MCT and replica theory for structural glasses predict neither a dynamical nor
a static glass transition. As a model we have chosen N infinitely thin hard rods with length
L fixed with their centres on a periodic lattice with lattice constant a. The only relevant
physical parameter is the dimensionless length l = L/a. Simulations for an fcc [29] and an
sc lattice [30] strongly suggested that a dynamical glass transition occurs at a critical length
lsim
c

∼= 2.7 [29] and lsim
c

∼= 4.5 [30]. Note that the rods in [30] were fixed at the lattice sites
with one of their end points.

To describe the dynamics of our model we have used the generalized N-rod Smoluchowski
equation from which we derived a hierarchy of coupled equations for δρ(k)

n1···nk
(�1, . . . , �k), the

fluctuations of the reduced k-rod densities. Truncating at the second level and approximating
the influence of surrounding rods on a pair of rods by the introduction of an effective diffusion
tensor D we finally obtained a self-consistency equation for D (equation (25)). This equation
describes a feedback mechanism (as MCT also does) which leads to a slowing down of the
dynamics and ultimately to an orientational glass transition, similar to that occurring in plastic
crystals [5–8, 11–13]. The model studied in the present paper may be applied to real plastic
crystals as has been shown in [8].

One of the essential features of the present MCT for the glass transition is the cage
effect [14]. For low temperature or high density an extended particle, e.g. a hard sphere,
is captured in a cage. The occurrence of this cage is accompanied by the growth of static
correlations. Particularly, the main peak of the static structure factor grows and this leads to an
increase of the static vertices entering the MCT equations. If the vertices reach a critical strength
the system will undergo a dynamical glass transition, provided ordering is prevented. In this
sense the cage effect entering into MCT through the static correlations is of static nature. The
model studied here does not have any static correlations, yet there is a cage effect. If the rods
are long enough the tagged rod’s motion can be strongly restricted to an ‘orientational’ cage (cf
figure 2). This cage, however, is of pure dynamical nature and leads to a glass transition as well.

Comparing the results for the fcc lattice obtained from our theoretical framework with
the additional approximation equation (31) with those from simulations [29, 30] one can say
that both values lnum

c
∼= 2.20 and lvar

c
∼= 3.96 are in a reasonable range of lsim

c
∼= 2.7 [29].

Taking into account that our approach involves uncontrollable approximations (equations (19)
and (20)) this is a satisfactory result. The tendency of lc to decrease when going from the
sc lattice to the bcc to the fcc lattice is consistent with our expectation that lc decreases with
increase of the coordination number and decrease of the nearest-neighbour distances. Of
course, second-, third- etc nearest neighbours also play a role, but with minor influence. Less
satisfactory is the exponent, γ , of the power law, D(l) ∼ (lc − l)γ , which is γ = 1, in contrast
to γ sim ∼= 4.2 [30]. Even if the simulated result turns out too high, the type-A transition
result, γ = 1, cannot be the correct value. This requires an improvement of our microscopic
approach. It is not obvious whether the approach presented in [22] which is based on rather
qualitative arguments can serve as a guide.

It seems that the ‘dynamical cage effect’ leads to a discontinuous variation of the non-
ergodicity parameter at lc and is accompanied close to lc by a two-step relaxation process, as
can be seen from the orientational correlator studied in [29]. Such a two-step relaxation was
first predicted by MCT [1, 14–16] and within this theory it is related to the cage effect. The
present theoretical approach predicts a continuous transition for the glass order parameters fλ.
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Therefore it does not yield a two-step relaxation. This fact demands for an improvement of
our theory, based on the hierarchy of equations for the k-rod densities. But on the other hand
it is, of course, a big challenge to extend the present MCT such that it includes the ‘dynamical
cage effect’ described above and that a discontinuous glass transition occurs. If this turns
out to be possible, it seems that the vertices must be generalized. Besides static correlations,
i.e. correlators at time t = 0, they must also contain dynamical ones. These dynamical
correlations may enter through a time-dependent force–force correlator

∫ ∞
0 dt〈F (t) · F (0)〉,

i.e. as a Laplace transformed correlator at frequency z = 0 (as found in the present approach).
For systems with vanishing static correlations, as for our model, the vertices would be of
purely dynamical nature. Now, increasing d to finite values will generate static correlations.
For small thickness the ‘dynamical cage’ will be still dominant, but at a crossover value dc.o.

the static cage effect would become comparable with the dynamical one and for d > dc.o. it
would be the dominant one.

Let us come back to the choice of Brownian versus Newtonian dynamics. We have found
that the glass transition is driven by the increase of the Laplace transform at z = 0 of the time-
dependent torque–torque correlator of an isolated pair of rods. This correlator is different for
Brownian and Newtonian dynamics. Therefore the critical length lc will be not be the same for
both dynamics. At present, it is not clear whether this is only a small effect. This is different
from what has been found for liquids with non-trivial static correlations [33, 34]. However,
the linear dependence of the nonergodicity parameters and of the diffusion constant on ε, the
quadratic dependence of the frequency scale ωε on ε and the t−1/2 dependence of the correlator
at the critical length lc should be independent of the type of dynamics.

It would be interesting to re-investigate the lattice model with infinitely thin hard rods by
computer simulations. With present computers it should be possible to cover a larger time
range and to study the dynamics close to lc in greater detail. This would allow us to check
whether the two scaling laws and other predictions of MCT are consistent with simulations. If
the outcome of such a test proves consistency it would encourage theoretical efforts to extend
the microscopic theory within the framework of MCT.

Besides rods on a lattice one could also investigate liquid systems of ‘particles’ built by
crossing infinitely thin hard rods. If the number of ‘legs’ (rods) of a ‘particle’ becomes large
they may exhibit quite similar dynamical behaviour to hard spheres, although there are no static
correlations. The timescale on which these ‘particles’ realize that they are not hard spheres
could be much larger than a typical timescale for structural relaxation.

To conclude, we have discussed a purely dynamical mechanism which also drives a glass
transition and which up to now has received almost no attention. Its further investigation by
computer simulations and analytical work seems to us a challenging task for the future.
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[7] Ramos M A, Vieira S, Bermejo F J, Dawidowski J, Fischer H E, Schober H, González M A, Loong C K and
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Fischer H E 1999 Phys. Rev. Lett. 83 2757
[9] Michel K H 1986 Phys. Rev. Lett. 57 2188

Michel K H 1988 Z. Phys. B 71 369
[10] Bostoen C and Michel K H 1991 Phys. Rev. B 43 4415
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